luacheck Documentation
Release 0.10.0

Peter Melnichenko

July 17, 2015

Contents

List of warnings 3
1.1 Global variables L e e 4
1.2 Unused variables and values e 4
1.3 Shadowing declarations L e e e 5
1.4 Control flow and data flow iSSUES L e e e e 5
Command line interface 7
2.1 Command line options L e e e e e e e 8
2.2 Patterns o . e e e e e e e e e e e e e e e e 9
2.3 FOrmatters v v i i e 10
24 Caching o e e e e e e e e 10
Configuration file 11
3.1 Config options v . e e e e e e e e e 11
3.2 Per-prefix overrides e e e e e e e e e e 12
Inline options 13
Luacheck module 15
5.1 Reportformat. e 15

luacheck Documentation, Release 0.10.0

Contents:

Contents 1

luacheck Documentation, Release 0.10.0

2 Contents

CHAPTER 1

List of warnings

Warnings produced by Luacheck are categorized using three-digit warning codes. Warning codes can be displayed in
CLI output using ——codes CLI option or code config option.

Code

Description

111

Setting an undefined global variable.

112

Mutating an undefined global variable.

113

Accessing an undefined global variable.

121

Setting a read-only global variable.

122

Mutating a read-only global variable.

131

Unused implicitly defined global variable.

211

Unused local variable.

212

Unused argument.

213

Unused loop variable.

221

Local variable is accessed but never set.

231

Local variable is set but never accessed.

232

An argument is set but never accessed.

233

Loop variable is set but never accessed.

311

Value assigned to a local variable is unused.

312

Value of an argument is unused.

313

Value of a loop variable is unused.

321

Accessing uninitialized local variable.

411

Redefining a local variable.

412

Redefining an argument.

413

Redefining a loop variable.

421

Shadowing a local variable.

422

Shadowing an argument.

423

Shadowing a loop variable.

431

Shadowing an upvalue.

432

Shadowing an upvalue argument.

433

Shadowing an upvalue loop variable.

511

Unreachable code.

512

Loop can be executed at most once.

521

Unused label.

531

Left-hand side of an assignment is too short.

532

Left-hand side of an assignment is too long.

541

An empty do end block.

542

An empty i f branch.

B = N Y N T

luacheck Documentation, Release 0.10.0

1.1 Global variables

For each file, Luacheck builds list of defined globals which can be used there. By default only globals from Lua
standard library are defined; custom globals can be added using ——globals CLI option or globals config option,
and version of standard library can be selected using ——std CLI option or std config option. When an undefined
global is set, mutated or accessed, Luacheck produces a warning.

1.1.1 Read-only globals

By default, all standard globals except _G and package are marked as read-only, so that setting or mutating them pro-
duces a warning. Custom read-only globals can be added using ——read-globals CLI option or read_globals
config option.

1.1.2 Implicitly defined globals

Luacheck can be configured to consider globals assigned under some conditions to be defined implicitly. When
—d/--allow_defined CLI option or allow_defined config option is used, all assignments to globals define
them; when —-t/--allow_defined_top CLI option or allow_defined_top config option is used, assign-
ments to globals in the top level function scope (also known as main chunk) define them. A warning is produced when
an implicitly defined global is not accessed anywhere.

1.1.3 Modules

Files can be marked as modules using —m/--module CLI option or module config option to simulate semantics of
the deprecated module function. Globals implicitly defined inside a module are considired part of its interface, are not
visible outside and are not reported as unused. Assignments to other globals are not allowed, even to defined ones.

1.2 Unused variables and values

Luacheck generates warnings for all unused local variables except one named _. It also detects variables which are set
but never accessed or accessed but never set.

1.2.1 Unused values and uninitialized variables

For each value assigned to a local variable, Luacheck computes set of expressions where it could be used. Warnings
are produced for unused values (when a value can’t be used anywhere) and for accessing uninitialized variables (when
no values can reach an expression). E.g. in the following snippet value assigned to foo on line 1 is unused, and
variable bar is uninitialized on line 9:

local foo = exprl()
local bar

if condition() then
foo = expr2()
bar = expr3()

else
foo = expr4()
print (bar)

end

4 Chapter 1. List of warnings

http://www.lua.org/manual/5.1/manual.html#pdf-module

R B N e

luacheck Documentation, Release 0.10.0

return foo, bar

1.2.2 Secondary values and variables

Unused value assigned to a local variable is secondary if its origin is the last item on the RHS of assignment, and
another value from that item is used. Secondary values typically appear when result of a function call is put into
locals, and only some of them are later used. For example, here value assigned to b is secondary, value assigned to c
is used, and value assigned to a is simply unused:

local a, b, ¢ = £(), g()

return c

A variable is secondary if all values assigned to it are secondary. In the snippet above, b is a secondary variable.

Warnings related to unused secondary values and variables can be removed using
—-s/-—no-unused-secondaries CLI option or unused_secondaries config option.

1.3 Shadowing declarations

Luacheck detects declarations of local variables shadowing previous declarations, unless the variable is named _. If
the previous declaration is in the same scope as the new one, it is called redefining.

Note that it is not necessary to define a new local variable when overwriting an argument:

local function f (x)
local x = x or "default" -- bad
end

local function f (x)
x = x or "default" -- good
end

1.4 Control flow and data flow issues

The following control flow and data flow issues are detected:
» Unreachable code and loops that can be executed at most once (e.g. due to an unconditional break);
¢ Unused labels;
* Unbalanced assignments;

* Empty blocks.

1.3. Shadowing declarations 5

luacheck Documentation, Release 0.10.0

6 Chapter 1. List of warnings

CHAPTER 2

Command line interface

luacheck program accepts files, directories and rockspecs as arguments.

Given a file, luacheck will check it.

Given —, luacheck will check stdin.

Given a directory, luacheck will check all files with . 1lua extension within it. This feature requires Lu-
aFileSystem (installed automatically if LuaRocks was used to install Luacheck).

Given a rockspec (a file with . rockspec extension), lLuacheck will check all files with . 1ua extension
mentioned in the rockspec in build.install.lua, build.install.bin and build.modules ta-

bles.

The output of 1luacheck consists of separate reports for each checked file and ends with a summary:

$ luacheck src
Checking src/bad_code.lua

src/bad_code.lua:
src/bad_code.lua:
src/bad_code.lua:
src/bad_code.lua:
src/bad_code.lua:

OW 00 J W W

Checking src/good_code.lua
Checking src/python_code.lua

spec/samples/python_code

Checking src/unused_code.lua

Total:

src/unused_code.
src/unused_code.
src/unused_code.
src/unused_code.
src/unused_code.
src/unused_code.
src/unused_code.
src/unused_code.
src/unused_code.

lua:
lua:
lua:
lua:
lua:
lua:
lua:
lua:
lua:

:8:

~N JJ 0 W

14 warnings / 1 error

:18:

:13:
:11:
:14:
:17:
13:7:
14:1:
22:1:

Failure

:16: unused variable helper

:23: unused variable length argument

:10: setting non-standard global variable embrace

:10: variable opt was previously defined as an argument on line 7
:11: accessing undefined variable hepler

OK
Syntax error

.lua:1:6: expected '=' near '__ future_ '
Failure

unused argument baz
unused loop variable i

unused variable g

unused loop variable a

unused loop variable b

unused loop variable c

value assigned to variable x is unused
value assigned to variable x is unused
value assigned to variable z is unused

in 4 files

luacheck exits with 0 if no warnings or errors occured and with a positive number otherwise.

http://www.luarocks.org/en/Rockspec_format
http://keplerproject.github.io/luafilesystem/
http://keplerproject.github.io/luafilesystem/

luacheck Documentation, Release 0.10.0

2.1 Command line options

Short options that do not take an argument can be combined into one, so that —gqu is equivalent to ~g —-g -u. For
long options, both ——option value or ——option=value can be used.

Options taking several arguments can be used several times; ——ignore foo —--ignore bar is equivalent to

——ignore foo bar.

Note that options that may take several arguments, such as ——globals, should not be used immediately before
positional arguments; given ——globals foo bar file.lua, luacheck will consider all foo, bar and
file. lua global and then panic as there are no file names left.

Option Meaning

-gl--no-global Filter out warnings related to global variables.

-ul--no-unused Filter out warnings related to unused variables and val-
ues.

-r | -—no-redefined Filter out warnings related to redefined variables.

—al--no-unused-args Filter out warnings related to unused arguments and
loop variables.

-s | --no-unused-secondaries Filter out warnings related to unused variables set to-
gether with used ones.
See Secondary values and variables

-—std <std> Set standard globals. <std> must be one of:

* _G - globals of the Lua interpreter luacheck
runs on (default);

* luabl - globals of Lua 5.1;

e lua52 - globals of Lua 5.2;

e luab2c - globals of Lua 5.2 compiled with
LUA_COMPAT_ALL;

* luab3 - globals of Lua 5.3;

e luab3c - globals of Lua 5.3 compiled with
LUA_COMPAT _5_2;

* luajit - globals of LuaJIT 2.0;

* min - intersection of globals of Lua 5.1, Lua 5.2
and LualIT 2.0;

* max - union of globals of Lua 5.1, Lua 5.2 and
LualIT 2.0,

* none - no standard globals.

—-—globals [<global>]

Add custom globals on top of standard ones.

——read—-globals [<global>]

Add read-only globals.

—-—-new—globals [<global>]

Set custom globals. Removes custom globals added pre-
viously.

——new—-read—-globals [<global>]

Set read-only globals. Removes read-only globals added
previously.

—c | ——compat

Equivalent to ——std max.

—-dl--allow-defined

Allow defining globals implicitly by setting them.
See Implicitly defined globals

-t | --allow-defined-top

Allow defining globals implicitly by setting them in the
top level scope.
See Implicitly defined globals

Continued on next page

Chapter 2. Command line interface

luacheck Documentation, Release 0.10.0

Table 2.1 — continued from previous page

Option

Meaning

-m| ——module

Limit visibility of implicitly defined globals to their
files.
See Modules

—-—no—-unused-globals

Filter out warnings related to set but unused global vari-
ables.

-—ignore | -i <patt> [<patt>] Filter out warnings matching patterns.
——enable | -o <patt> [<patt>] Do not filter out warnings matching patterns.
-—only | —-o <patt> [<patt>] Filter out warnings not matching patterns.

—-—no-inline

Disable inline options.

--config <config>

Path to custom configuration file (default:
.luacheckrc).

—--no-config

Do not look up custom configuration file.

——cache [<cache>]

Path to cache file. (default: . luacheckcache). See
Caching

——no-cache

Do not use cache.

-jl-—jobs

Check <Jjobs> files in parallel. Requires Lualanes.

——formatter <formatter>

Use custom formatter. <formatter> must be a mod-
ule name or one of:

e TAP - Test Anything Protocol formatter;

e JUnit - JUnit XML formatter;

* plain - simple warning-per-line formatter;

e default - standard formatter.

-gl--quiet Suppress report output for files without warnings.
* —qq - Suppress output of warnings.
* —gqq - Only output summary.
—-—codes Show warning codes.
—-—no-color Do not colorize output.
-v|--version Show version of luacheck and its dependencies and exit.
-hl--help Show help and exit.

2.2 Patterns

CLI options ——ignore, ——enable and ——only and corresponding config options allow filtering warnings using
pattern matching on warning codes, variable names or both. If a pattern contains a slash, the part before slash matches
warning code and the part after matches variable name. Otherwise, if a pattern contains a letter or underscore, it
matches variable name. Otherwise, it matches warning code. E.g.:

Pattern | Matching warnings

4.2 Shadowing declarations of arguments or redefining them.

G Warnings related to variables with _ suffix.

4.2/%_ Shadowing declarations of arguments with __ suffix or redefining them.

Unless already anchored, patterns matching variable names are anchored at both sides and patterns matching warn-
ing codes are anchored at their beginnings. This allows to filter warnings by category (e.g. ——only 1 focuses

luacheck on global-related warnings).

2.2. Patterns

http://cmr.github.io/lanes/

luacheck Documentation, Release 0.10.0

2.3 Formatters

CLI option ——-formatter allows selecting a custom formatter for luacheck output. A custom formatter is a Lua
module returning a function with three arguments: report as returned by luacheck module (see Report format),
array of file names and table of options. Options contain values assigned to quiet, color, 1imit, codes and
formatter options in CLI or config. Formatter function must return a string.

2.4 Caching

If LuaFileSystem is available, Luacheck can cache results of checking files. On subsequent checks, only files which
have changed since the last check will be rechecked, improving run time significantly. Changing options (e.g. defin-
ing additional globals) does not invalidate cache. Caching can be enabled by using ——cache <cache> option
or cache config option. Using ——cache without an argument or setting cache config option to true sets
.luacheckcache as the cache file. Note that ——cache must be used every time luacheck is run, not on
the first run only.

10 Chapter 2. Command line interface

CHAPTER 3

Configuration file

By default, luacheck tries to load configuration from . luacheckrc file in the current directory. Path to config
can be set using ——config option. Config loading can be disabled using ——no-config flag.

Config is simply a Lua script executed by 1uacheck. It may set various options by assigning to globals.

3.1 Config options

Option Type Default value
color Boolean true
codes Boolean false
formatter String "default"
cache Boolean or string false
jobs Positive integer 1

global Boolean true
unused Boolean true
redefined Boolean true
unused_args Boolean true
unused_secondaries | Boolean true

std String or array of strings "_G"

globals

Array of strings

{}

new_globals

Array of strings

(Do not overwrite)

read_globals

Array of strings

{}

new_read_globals

Array of strings

(Do not overwrite)

compat Boolean false
allow_defined Boolean false
allow_defined_top Boolean false
module Boolean false
unused_globals Boolean true
ignore Array of patterns (see Patterns) | {}

enable Array of patterns {}

only Array of patterns (Do not filter)
inline Boolean true

An example of a config which makes 1uacheck ensure that only globals from the portable intersection of Lua 5.1,
Lua 5.2, Lua 5.3 and LuaJIT 2.0 are used, as well as disables detection of unused arguments:

std = "min"
ignore = {"211"}

11

I L= T S

luacheck Documentation, Release 0.10.0

3.2 Per-prefix overrides

The environment in which luacheck loads the config contains a special global files. When checking a file
<path>, luacheck will override options from the main config with entries from files [<path_prefix>], ap-
plying entries for shorter prefixes first. This allows to override options for a specific file by setting files [<path>],
and for all files in a directory by setting files [<dir>/]. For example, the following config re-enables detection
of unused arguments only for files in src/dir, but not for src/dir/myfile. lua:

std = "min"
ignore = {"211"}

files["src/dir/"] = {
enable = {"211"}
}

files["src/dir/myfile.lua"] = {
ignore = {"211"}
}

Note that £i1les table supports autovivification, so that

files["myfile.lua"].ignore = {"211"}

and

files["myfile.lua"] = {
ignore = {"211"}
}

are equivalent.

12 Chapter 3. Configuration file

CHAPTER 4

Inline options

Luacheck supports setting some options directly in the checked files using inline configuration comments. An inline
configuration comment starts with luacheck: label, possibly after some whitespace. The body of the comment
should contain comma separated options, where option invocation consists of its name plus space separated arguments.
The following options are supported:

Option Number of arguments
compat 0

module 0

allow_defined 0

allow_defined_top | O

std 1

globals 0+

new_globals 0+

read_globals 0+

new_read_globals | O+

ignore 0+ (without arguments everything is ignored)
enable 1+

only 1+

Part of the file affected by inline option dependes on where it is placed. If there is any code on the line with the option,
only that line is affected; otherwise, everthing till the end of the current closure is. In particular, inline options at the
top of the file affect all of it:

—— luacheck: globals gl g2, ignore foo
local foo = gl(g2) -- No warnings emitted.

—-— The following unused function is not reported.
local function f () ——- luacheck: ignore

—— luacheck: globals g3

g3() —-—- No warning.
end

g3() —-—- Warning is emitted as the inline option defining g3 only affected function f.

For fine-grained control over inline option visibility use luacheck: pushand luacheck: pop directives:

—— luacheck: push
—— luacheck: ignore foo

foo() —-— No warning.
—— luacheck: pop
foo() —— Warning is emitted.

13

luacheck Documentation, Release 0.10.0

Inline options can be completely disabled using ——no—-inline CLI option or inline config option.

14 Chapter 4. Inline options

CHAPTER 5

Luacheck module

Use local luacheck = require "luacheck" to import luacheck module. It contains the following
functions:

e luacheck.get_report (source): Given source string, returns analysis data (an array) or nil and syntax
error table (table with fields 1ine, column, offset, msq).

* luacheck.process_reports (reports, options): Processes array of analysis reports and applies
options. reports[i] usesoptions,options[i],options[i] [1],options[i] [2],... asoptions,
overriding each other in that order. Options table is a table with fields similar to config options; see Config
options. Analysis reports with field error are ignored. process_reports returns final report, see Report
format.

e luacheck.check_strings (sources, options): Checks array of sources using options, returns fi-
nal report. Tables in sources array are ignored.

e luacheck.check_files(files, options): Checks array of files using options, returns final report.
Open file handles can passed instead of filenames, in which case they will be read till EOF and closed.

luacheck._VERSION contains Luacheck version as a string in MAJOR . MINOR.PATCH format.

Using luacheck as a function is equivalent to calling luacheck.check_files.

5.1 Report format

A final report is an array of file reports plus fields warnings and errors containing total number of warnings and
errors, correspondingly.

A file report is an array of warnings. If an error occured while checking a file, its report will have error field
containing "I/0" or "syntax". In case of syntax error, 1ine (number), colunmn (number), of fset (number)
and msg (string) fields are also present.

A warning is a table with field code indicating the type of warning (see List of warnings), and fields 1ine and
column pointing to the source of the warning. Absence of code field indicates that the warning is related to a broken
inline configuration comment; then, invalid field marks comments with invalid syntax, and unpaired field marks
unpaired push/pop comments.

Warnings of some types can also have additional fields:

Codes | Additional fields

111 module field indicates that assignment is to a non-module global variable.

211 func field indicates that unused variable is a function.

212 vararg field indicated that variable length argument is unused.

4.. prev_line and prev_column fields contain location of the overwritten defintion.

15

luacheck Documentation, Release 0.10.0

Other fields may be present for internal reasons.

This is documentation for Luacheck 0.10.0, a static analyzer and a linter for Lua.

16 Chapter 5. Luacheck module

https://github.com/mpeterv/luacheck/
http://www.lua.org/

	List of warnings
	Global variables
	Unused variables and values
	Shadowing declarations
	Control flow and data flow issues

	Command line interface
	Command line options
	Patterns
	Formatters
	Caching

	Configuration file
	Config options
	Per-prefix overrides

	Inline options
	Luacheck module
	Report format

